Source code for cryosparc2.protocols.protocol_cryosparc_ab

# **************************************************************************
# *
# *  Authors:     Szu-Chi Chung (phonchi@stat.sinica.edu.tw) 
# *               Yunior C. Fonseca Reyna (cfonseca@cnb.csic.es)
# *
# * SABID Laboratory, Institute of Statistical Science, Academia Sinica
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 2 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address 'scipion@cnb.csic.es'
# *
# **************************************************************************
import os

import emtable

import pyworkflow.utils as pwutils
from pyworkflow.object import String
from pyworkflow.protocol.params import (PointerParam, FloatParam,
                                        LEVEL_ADVANCED, IntParam, Positive,
                                        BooleanParam, EnumParam)

from pwem import ALIGN_PROJ
from pwem.protocols import ProtInitialVolume, ProtClassify3D

from .protocol_base import ProtCryosparcBase
from ..convert import (defineArgs, convertCs2Star, cryosparcToLocation,
                       rowToAlignment)

from ..utils import (addSymmetryParam, addComputeSectionParams,
                     cryosparcValidate, gpusValidate, getSymmetry, enqueueJob,
                     calculateNewSamplingRate, waitForCryosparc,
                     clearIntermediateResults, fixVolume, copyFiles)
from ..constants import *


[docs]class ProtCryoSparcInitialModel(ProtCryosparcBase, ProtInitialVolume, ProtClassify3D): """ Generate a 3D initial model _de novo_ from 2D particles using CryoSparc Stochastic Gradient Descent (SGD) algorithm. """ _label = 'initial model' _className = "homo_abinit" # --------------------------- DEFINE param functions ---------------------- def _defineFileNames(self): """ Centralize how files are called within the protocol. """ myDict = { 'input_particles': self._getTmpPath('input_particles.star'), 'out_particles': self._getExtraPath() + '/output_particle.star', 'out_class': self._getExtraPath() + '/output_class.star' } self._updateFilenamesDict(myDict) def _defineParams(self, form): form.addSection(label='Input') form.addParam('inputParticles', PointerParam, pointerClass='SetOfParticles', label="Input particles", important=True, help='Select the input images from the project.') # --------------[Ab-Initio reconstruction]--------------------------- form.addSection(label='Ab-Initio reconstruction') form.addParam('abinit_K', IntParam, default=1, validators=[Positive], label='Number of Ab-Initio classes:', help='The number of classes. Each class will be randomly ' 'initialized independently, unless an initial ' 'structure was provided, in which case each class ' 'will be a random variant of the initial structure') form.addParam('abinit_max_res', FloatParam, default=12.0, validators=[Positive], label='Maximum resolution (Angstroms):', help='Maximum frequency to consider') form.addParam('abinit_init_res', FloatParam, default=35.0, validators=[Positive], label='Initial resolution (Angstroms):', help='Starting frequency to consider') form.addParam('abinit_num_init_iters', IntParam, default=200, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Number of initial iterations:', help='Number of initial iterations before annealing starts') form.addParam('abinit_num_final_iters', IntParam, default=300, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Number of final iterations:', help='Number of final iterations after annealing ends') form.addParam('abinit_radwn_step', FloatParam, default=0.04, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Fourier radius step:', help='Increase in Fourier radius a each iteration') form.addParam('abinit_window', BooleanParam, default=True, expertLevel=LEVEL_ADVANCED, label='Window structures in real space:', help='Softly window the reconstructions in real space at ' 'each iteration') form.addParam('abinit_center', BooleanParam, default=True, expertLevel=LEVEL_ADVANCED, label='Center structures in real space:', help='Center the reconstructions in real space at each ' 'iteration') form.addParam('abinit_scale_mg_correct', BooleanParam, default=False, expertLevel=LEVEL_ADVANCED, label='Correct for per-micrograph optimal scales:', help='(Experimental) Estimate and compute optimal scales ' 'per micrograph') form.addParam('abinit_scale_compute', BooleanParam, default=False, expertLevel=LEVEL_ADVANCED, label='Compute per-image optimal scales:', help='(Experimental) Estimate and compute optimal scales ' 'per image') form.addParam('abinit_mom', FloatParam, default=0, expertLevel=LEVEL_ADVANCED, label='SGD Momentum:', help='Momentum for stochastic gradient descent') form.addParam('abinit_sparsity', FloatParam, default=0, expertLevel=LEVEL_ADVANCED, label='Sparsity prior:', help='') form.addParam('abinit_minisize_init', IntParam, default=90, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Initial minibatch size:', help='Number of images per minibatch at the beginning. ' 'Set to zero to autotune') form.addParam('abinit_minisize', IntParam, default=300, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Final minibatch size:', help='Final number of images per minibatch. Set to zero ' 'to autotune') form.addParam('abinit_minisize_epsilon', FloatParam, default=0.05, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Abinit minisize epsilon:', help='Parameter that controls batch size when autotuning ' 'minibatch size. Set closer to zero for larger ' 'batches') form.addParam('abinit_minisize_minp', FloatParam, default=0.01, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Abinit minisize minp:', help='Parameter that controls how the batch size adjusts ' 'to low probability classes when autotuning ' 'minibatch sizes') form.addParam('abinit_minisize_num_init_iters', IntParam, default=300, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Initial minibatch size num iters:', help='When to switch to final number of images per ' 'minibatch') form.addParam('abinit_noise_model', EnumParam, choices=['symmetric', 'white', 'coloured'], default=0, label='Noise model:', help='Noise model to use. Valid options are white, ' 'coloured or symmetric. Symmetric is the default, ' 'meaning coloured with radial symmetry') form.addParam('abinit_noise_priorw', IntParam, default=50, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Noise priorw:', help='Weight of the prior for estimating noise ' '(units of # of images)') form.addParam('abinit_noise_initw', IntParam, default=5000, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Noise initw:', help='Weight of the initial noise estimate ' '(units of # of images)') form.addParam('abinit_class_anneal_beta', FloatParam, default=0.1, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Class similarity:', help='Expected similarity of structures from different ' 'classes. A number between 0 and 1. 0 means classes ' 'are independent, 1 means classes are very similar)') form.addParam('abinit_class_anneal_start', IntParam, default=300, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Class similarity anneal start iter:', help='Start point for annealing the similarity factor') form.addParam('abinit_class_anneal_end', IntParam, default=350, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Class similarity anneal end iter:', help='Finish point for annealing the similarity factor') form.addParam('abinit_target_initial_ess_fraction', FloatParam, default=0.011, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Target 3D ESS Fraction:', help='Fraction of poses at the first iteration that ' 'should have significant probability (used for ' 'auto-tuning initial noise sigma-scale)') addSymmetryParam(form, help="Symmetry enforced (C, D, I, O, T). Eg. " "C1, D7, C4 etc. Enforcing symmetry above " "C1 is not recommended for ab-initio " "reconstruction") form.addParam('abinit_r_grid', FloatParam, default=25, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Abinit_r_grid:') form.addParam('abinit_high_lr_duration', FloatParam, default=100, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Initial learning rate duration:', help='How long to apply the initial learning rate') form.addParam('abinit_high_lr', FloatParam, default=0.4, validators=[Positive], label='Initial learning rate:', help='Learning rate (step size) used at the start of ' 'optimization to help make rapid progress') form.addParam('abinit_nonneg', BooleanParam, default=True, label='Enforce non-negativity:', help='Enforce non-negativity of structures in real ' 'space during optimization. Non-negativity is ' 'recommended for ab-initio reconstruction') form.addParam('abinit_ignore_dc', BooleanParam, default=True, label='Ignore DC component:', help='Ignore the DC component of images. Should be true') form.addParam('abinit_init_radwn_cutoff', IntParam, default=7, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Initial structure lowpass (Fourier radius):', help='Lowpass filter cutoff in Fourier radius for ' 'initial random structures') form.addParam('abinit_search_start_iter', IntParam, default=200, expertLevel=LEVEL_ADVANCED, validators=[Positive], label='Abinit_search_start_iter:') form.addParam('abinit_use_engine', BooleanParam, default=True, expertLevel=LEVEL_ADVANCED, label='Use fast codepaths:') form.addParam('intermediate_plots', BooleanParam, default=True, expertLevel=LEVEL_ADVANCED, label='Show plots from intermediate steps:') # --------------[Compute settings]--------------------------- form.addSection(label="Compute settings") addComputeSectionParams(form, allowMultipleGPUs=False) # --------------------------- INSERT steps functions ----------------------- def _insertAllSteps(self): self._defineFileNames() self._defineParamsName() self._initializeCryosparcProject() self._insertFunctionStep(self.convertInputStep) self._insertFunctionStep(self.processStep) self._insertFunctionStep(self.createOutputStep) # --------------------------- STEPS functions ------------------------------
[docs] def processStep(self): print(pwutils.yellowStr("Ab Initial Model Generation Started..."), flush=True) self.doRunAbinit()
[docs] def createOutputStep(self): """ Create the protocol output. Convert cryosparc file to Relion file """ print(pwutils.yellowStr("Creating the output..."), flush=True) self._initializeUtilsVariables() csOutputFolder = os.path.join(self.projectPath, self.projectName.get(), self.runAbinit.get()) csFileName = "cryosparc_%s_%s_final_particles.cs" % (self.projectName.get(), self.runAbinit.get()) outputFolder = os.path.join(self._getExtraPath(), self.runAbinit.get()) # Copy the CS output to extra folder copyFiles(csOutputFolder, outputFolder) csFile = os.path.join(outputFolder, csFileName) outputClassFn = self._getFileName('out_particles') argsList = [csFile, outputClassFn] parser = defineArgs() args = parser.parse_args(argsList) convertCs2Star(args) # Create model files for 3D classification self._createModelFile() imgSet = self._getInputParticles() classes3D = self._createSetOfClasses3D(imgSet) self._fillClassesFromIter(classes3D, self._getFileName('out_particles')) self._defineOutputs(outputClasses=classes3D) self._defineSourceRelation(self.inputParticles.get(), classes3D) # create a SetOfVolumes and define its relations volumes = self._createSetOfVolumes() vol = None for class3D in classes3D: vol = class3D.getRepresentative() vol.setObjId(class3D.getObjId()) volumes.append(vol) volumes.setSamplingRate(vol.getSamplingRate()) self._defineOutputs(outputVolumes=volumes) self._defineSourceRelation(self.inputParticles.get(), volumes)
# --------------------------- INFO functions ------------------------------- def _validate(self): validateMsgs = cryosparcValidate() if not validateMsgs: validateMsgs = gpusValidate(self.getGpuList(), checkSingleGPU=True) if not validateMsgs: particles = self._getInputParticles() if not particles.hasCTF(): validateMsgs.append( "The Particles has not associated a " "CTF model") return validateMsgs def _summary(self): summary = [] if (not hasattr(self, 'outputVolumes') or not hasattr(self, 'outputClasses')): summary.append("Output objects not ready yet.") else: summary.append("Input Particles: %s" % self.getObjectTag('inputParticles')) summary.append("Number of Ab-Initio classes: %s" % str(self.abinit_K.get())) summary.append("Symmetry: %s" % getSymmetry(self.symmetryGroup.get(), self.symmetryOrder.get())) summary.append("------------------------------------------") summary.append("Output volume %s" % self.getObjectTag('outputVolumes')) summary.append("Output classes %s" % self.getObjectTag('outputClasses')) return summary # --------------------------- UTILS functions --------------------------- def _loadClassesInfo(self, filename): """ Read some information about the produced CryoSparc Classes from the star file. """ self._classesInfo = {} # store classes info, indexed by class id table = emtable.Table(fileName=filename) for classNumber, row in enumerate(table.iterRows(filename)): index, fn = cryosparcToLocation(row.get(RELIONCOLUMNS.rlnReferenceImage.value)) # Store info indexed by id, we need to store the row.clone() since # the same reference is used for iteration scaledFile = self._getScaledAveragesFile(fn, force=True) self._classesInfo[classNumber+1] = (index, scaledFile, row) def _fillClassesFromIter(self, clsSet, filename): """ Create the SetOfClasses3D """ outImgsFn = 'particles@' + filename self._loadClassesInfo(self._getFileName('out_class')) clsSet.classifyItems(updateItemCallback=self._updateParticle, updateClassCallback=self._updateClass, itemDataIterator=emtable.Table.iterRows(outImgsFn)) def _updateParticle(self, item, row): if row.hasColumn(RELIONCOLUMNS.rlnClassNumber.value): item.setClassId(row.get(RELIONCOLUMNS.rlnClassNumber.value)) else: item.setClassId(1) item.setTransform(rowToAlignment(row, ALIGN_PROJ)) def _updateClass(self, item): classId = item.getObjId() if classId in self._classesInfo: index, fn, row = self._classesInfo[classId] fixVolume(fn) item.setAlignmentProj() vol = item.getRepresentative() vol.setLocation(index, fn) vol.setSamplingRate(calculateNewSamplingRate(vol.getDim(), self._getInputParticles().getSamplingRate(), self._getInputParticles().getDim())) def _createModelFile(self): with open(self._getFileName('out_class'), 'w') as output_file: output_file.write('\n') output_file.write('data_images') output_file.write('\n\n') output_file.write('loop_') output_file.write('\n') output_file.write('_rlnReferenceImage') output_file.write('\n') for i in range(int(self.abinit_K.get())): row = ("%s/%s/cryosparc_%s_%s_class_%02d_final_volume.mrc\n" % (self._getExtraPath(), self.runAbinit.get(), self.projectName.get(), self.runAbinit.get(), i)) output_file.write(row) def _defineParamsName(self): """ Define a list with all protocol parameters names""" self._paramsName = ['abinit_K', 'abinit_max_res', 'abinit_init_res', 'abinit_num_init_iters', 'abinit_num_final_iters', 'abinit_radwn_step', 'abinit_window', 'abinit_center', 'abinit_scale_mg_correct', 'abinit_scale_compute', 'abinit_mom', 'abinit_sparsity', 'abinit_minisize_init', 'abinit_minisize', 'abinit_minisize_epsilon', 'abinit_minisize_minp', 'abinit_minisize_num_init_iters', 'abinit_noise_model', 'abinit_noise_priorw', 'abinit_noise_initw', 'abinit_class_anneal_beta', 'abinit_class_anneal_start', 'abinit_class_anneal_end', 'abinit_target_initial_ess_fraction', 'abinit_symmetry', 'abinit_r_grid', 'abinit_high_lr_duration', 'abinit_high_lr', 'abinit_nonneg', 'abinit_ignore_dc', 'abinit_init_radwn_cutoff', 'abinit_search_start_iter', 'abinit_use_engine', 'intermediate_plots', 'compute_use_ssd'] self.lane = str(self.getAttributeValue('compute_lane'))
[docs] def doRunAbinit(self): """self._program + " \'do_run_abinit(\"" + self.projectName + "\", \"" + self.workSpaceName + "\", \"\'" + self._user + "\'\", \"" + self.par + "\",\"\'1\'\")\'") """ input_group_connect = {"particles": self.particles.get()} params = {} if self.hasExpert(): for paramName in self._paramsName: if paramName != 'abinit_symmetry' and paramName != 'abinit_noise_model': params[str(paramName)] = str(self.getAttributeValue(paramName)) elif paramName == 'abinit_symmetry': symetryValue = getSymmetry(self.symmetryGroup.get(), self.symmetryOrder.get()) params[str(paramName)] = symetryValue elif paramName == 'abinit_noise_model': params[str(paramName)] = str(NOISE_MODEL_CHOICES[self.abinit_noise_model.get()]) # Determinate the GPUs to use (in dependence of # the cryosparc version) try: gpusToUse = self.getGpuList() except Exception: gpusToUse = False runAbinitJob = enqueueJob(self._className, self.projectName.get(), self.workSpaceName.get(), str(params).replace('\'', '"'), str(input_group_connect).replace('\'', '"'), self.lane, gpusToUse) self.runAbinit = String(runAbinitJob.get()) self.currenJob.set(self.runAbinit.get()) self._store(self) waitForCryosparc(self.projectName.get(), self.runAbinit.get(), "An error occurred in the initial volume process. " "Please, go to cryoSPARC software for more " "details.") clearIntermediateResults(self.projectName.get(), self.runAbinit.get(), wait=7)