Source code for pwem.protocols.protocol_boxsize_parameters

# **************************************************************************
# *
# * Authors:     Daniel Marchán (da.marchan@cnb.csic.es)
# *
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 3 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address 'scipion@cnb.csic.es'
# *
# **************************************************************************
import pyworkflow.protocol.params as params
from pwem.protocols import EMProtocol
from pyworkflow.object import Integer

BOXSIZE_EVEN = 'boxSizeEven'
EXTRACTION = 'boxSizeExtraction'
RADIUS_GAUTOMATCH = 'radiusGautomatch'
MIN_INTPAR_DIST_GAUTOMATCH= 'minIntPartDistanceGautomatch'
SIGMA_DIAM_GAUTOMATCH = 'sigmaDiameterGautomatch'
AVG_DIAM_GAUTOMATCH = 'averageDiameterGautomatch'
MIN_LOG_FILTER_RELION = 'minLoGFilterRelion'
MAX_LOG_FILTER_RELION = 'maxLoGFilterRelion'
RADIUS_TOPAZ = 'radiusTopaz'
NUM_PART_IMG_TOPAZ = 'numPartPerImgTopaz'
RADIUS_CONSENSUS = 'radiusConsensus'

[docs]class ProtBoxSizeParameters(EMProtocol): """ Protocol to make mathematical operations on particle picking boxsize. For sanity check all the generated outputs are even numbers. """ _label = 'box size related parameters' _possibleOutputs = {BOXSIZE_EVEN: Integer, EXTRACTION: Integer, RADIUS_GAUTOMATCH: Integer, MIN_INTPAR_DIST_GAUTOMATCH: Integer, SIGMA_DIAM_GAUTOMATCH: Integer, AVG_DIAM_GAUTOMATCH: Integer, MIN_LOG_FILTER_RELION: Integer, MAX_LOG_FILTER_RELION: Integer, RADIUS_TOPAZ: Integer, NUM_PART_IMG_TOPAZ: Integer, RADIUS_CONSENSUS: Integer} outputsToDefine = {} def __init__(self, **args): EMProtocol.__init__(self, **args) def _defineParams(self, form): """ Defines the parameters the protocol form will show and its behaviour :param form: """ form.addSection(label='Input') form.addParam('inputMicrographs', params.PointerParam, pointerClass='SetOfMicrographs', important=True, label="Input micrographs", help='Select the SetOfMicrographs from where we extract the sampling rate') form.addParam('boxSize', params.IntParam, label='Particle box size (px)', allowsPointers=True, important=True, help='This is size of the boxed particles (in pixels).\n' 'For sanity check if it is not, it will be transform to an even number.') # Extraction box size form.addParam('boolExtractPartBx', params.BooleanParam, default=False, label='Extract particles boxsize?', help='Select yes if you want to generate these parameters.') groupEx = form.addGroup('Extract particles boxsize', condition="boolExtractPartBx==%d" % True) groupEx.addParam('factorExtractPartBx', params.FloatParam, default=1.5, label='Factor to multiply the box size (px)', condition="boolExtractPartBx==%d" % True, help='Extraction box size (px) = picking box size (px) * *factor*') # Gautomatch picking parameters form.addParam('boolGautomatchParams', params.BooleanParam, default=False, label='Calculate gautomatch picking parameters?', help='Select yes if you want to generate these parameters.') groupGaut = form.addGroup('Gautomatch picking parameters', condition="boolGautomatchParams==%d" % True) groupGaut.addParam('factorGautRadius', params.FloatParam, default=0.75, label='Factor to obtain the particle radius (A)', condition="boolGautomatchParams==%d" % True, help='Particle radius in Angstrom. Default will be equal to 75% of reference size (box size).' '\nParticle radius (A) = picking box size (px) * sampling_rate (A/px) * *factor*') groupGaut.addParam('factorGautMinInterPartDist', params.FloatParam, default=0.9, label='Factor to obtain the min inter-particle distance (A)', condition="boolGautomatchParams==%d" % True, help='Minimum distance between particles in Angstrom\n ' 'Use value of 0.9~1.1X diameter; ' 'can be 0.3~0.5X for filament-like particle.' '\nMin inter-particle distnace (A) = picking box size (px) * sampling_rate (A/px)' ' * *factor*') groupGaut.addParam('factorGautSigmaDiameter', params.FloatParam, default=1.2, label='Factor to obtain the local sigma diameter (A)', condition="boolGautomatchParams==%d" % True, help='Diameter for estimation of local sigma, ' 'in Angstrom.\n' 'Usually this diameter could be 0.5-2x of your ' 'particle diameter according to several factors. ' 'When using bigger values, normally you should ' 'decrease *Local sigma cut-off*. For smaller and ' 'sharper high density contamination/ice/metal ' 'particles you could use a smaller diameter and ' 'larger *Local sigma cut-off*.' '\nLocal sigma diameter (A) = picking box size (px) * sampling_rate (A/px) * *factor*') groupGaut.addParam('factorGautAvgDiameter', params.FloatParam, default=1.5, label='Factor to obtain the local average diameter (A)', condition="boolGautomatchParams==%d" % True, help='Diameter for estimation of local average, in ' 'Angstrom. 1.5~2.0X particle diameter suggested.\n' 'However, if you have sharp/small ice or any ' 'dark/bright dots, using a smaller value will be ' 'much better to get rid of these areas.' '\nLocal average diameter (A) = picking box size (px) * sampling_rate (A/px) ' '* *factor*') # Relion box size form.addParam('boolRelionParams', params.BooleanParam, default=False, label='Calculate relion picking parameters?', help='Select yes if you want to generate these parameters.') groupRelion = form.addGroup('Relion picking parameters', condition="boolRelionParams==%d" % True) groupRelion.addParam('factorMinLoGFilter', params.FloatParam, default=0.95, label='Factor to obtain the Min diameter for LoG filter (A)', condition="boolRelionParams==%d" % True, help='This should correspond to the smallest size ' 'of your particles projections in Ångstroms.' '\nMin diameter for LoG filter (A) = picking box size (px) ' '* sampling_rate (A/px) * *factor*') groupRelion.addParam('factorMaxLoGFilter', params.FloatParam, default=1.05, label='Factor to obtain the Max diameter for LoG filter (A)', condition="boolRelionParams==%d" % True, help='This should correspond to the largest size ' 'of your particles projections in Ångstroms.' '\nMax diameter for LoG filter (A) = picking box size (px) ' '* sampling_rate (A/px) * *factor*') # Topaz picking parameters form.addParam('boolTopazParams', params.BooleanParam, default=False, label='Calculate topaz picking parameters?', help='Select yes if you want to generate these parameters.') groupGaut = form.addGroup('Topaz picking parameters', condition="boolTopazParams==%d" % True) groupGaut.addParam('factorTopazRadius', params.FloatParam, default=0.45, label='Factor to obtain the particle radius (px)', condition="boolTopazParams==%d" % True, help='Pixel radius around particle centers to consider.' '\nParticle radius (px) = picking box size (px) * *factor*') groupGaut.addParam('numPartPerImg', params.IntParam, default=300, label='Number of particles per image', condition="boolTopazParams==%d" % True, help='Expected number of particles per micrograph.\n' ' If -1 it will be estimated for you.') # Particle picking consensus parameters form.addParam('boolConsensusParams', params.BooleanParam, default=False, label='Calculate picking consensus parameters?', help='Select yes if you want to generate these parameters.') groupGaut = form.addGroup('Picking consensus parameters', condition="boolConsensusParams==%d" % True) groupGaut.addParam('factorConsensusRadius', params.FloatParam, default=0.9, label='Factor to obtain the particle radius (px)', condition="boolConsensusParams==%d" % True, help='Pixel radius around particle centers to consider.' '\nParticle radius (px) = picking box size (px) * *factor*') form.addParallelSection(threads=1, mpi=1) def _insertAllSteps(self): self.initParams() self._checkNewInput()
[docs] def initParams(self): self.outputDone = False
[docs] def createOutput(self, modifiedSet): pass
def _stepsCheck(self): self._checkNewInput() self._checkNewOutput() def _checkNewInput(self): if hasattr(self, 'samplingRate') and hasattr(self, 'boxSize'): return None self.boxSize = self.boxSize.get() self.samplingRate = self.inputMicrographs.get().getSamplingRate() fDeps = self._insertNewOperationsStep(self.boxSize, self.samplingRate) self.updateSteps() def _insertNewOperationsStep(self, boxSize, samplingRate): deps = [] stepId = self._insertFunctionStep('applyFormulaStep', boxSize, samplingRate, prerequisites=[]) deps.append(stepId) return deps def _checkNewOutput(self): if self.outputDone: self.createResultsOutput()
[docs] def applyFormulaStep(self, boxSize, samplingRate): """ Applies the formula to each of the parameters selected by the user. """ self.registerEvenBoxSize(boxSize) if self.boolExtractPartBx.get(): self.calculateParticleExtractionParams(boxSize) if self.boolGautomatchParams.get(): self.calculateGautomatchParams(boxSize, samplingRate) if self.boolRelionParams.get(): self.calculateRelionParams(boxSize, samplingRate) if self.boolTopazParams.get(): self.calculateTopazParams(boxSize) if self.boolConsensusParams.get(): self.calculateConsensusParams(boxSize) self.outputDone = True
[docs] def registerOutput(self, outputName, value): self.outputsToDefine[outputName] = value
[docs] def registerEvenBoxSize(self, boxSize): boxSize = transform2EvenNumber(boxSize) self.registerOutput(BOXSIZE_EVEN, Integer(boxSize))
[docs] def calculateParticleExtractionParams(self, boxSize): self.registerOutput(EXTRACTION, Integer(transform2EvenNumber(boxSize * self.factorExtractPartBx.get())))
[docs] def calculateGautomatchParams(self, boxSize, samplingRate): self.registerOutput(RADIUS_GAUTOMATCH, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorGautRadius.get()))) self.registerOutput(MIN_INTPAR_DIST_GAUTOMATCH, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorGautMinInterPartDist.get()))) self.registerOutput(SIGMA_DIAM_GAUTOMATCH, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorGautSigmaDiameter.get()))) self.registerOutput(AVG_DIAM_GAUTOMATCH, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorGautAvgDiameter.get())))
[docs] def calculateRelionParams(self, boxSize, samplingRate): self.registerOutput(MIN_LOG_FILTER_RELION, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorMinLoGFilter.get()))) self.registerOutput(MAX_LOG_FILTER_RELION, Integer(transform2EvenNumber(boxSize * samplingRate * self.factorMaxLoGFilter.get())))
[docs] def calculateTopazParams(self, boxSize): self.registerOutput(RADIUS_TOPAZ, Integer(transform2EvenNumber(boxSize * self.factorTopazRadius.get()))) # TODO: the numPartPerImg needs to be estimated self.registerOutput(NUM_PART_IMG_TOPAZ, Integer(transform2EvenNumber(self.numPartPerImg.get())))
[docs] def calculateConsensusParams(self, boxSize): self.registerOutput(RADIUS_CONSENSUS, Integer(transform2EvenNumber(boxSize * self.factorConsensusRadius.get())))
[docs] def createResultsOutput(self): """ The output can be an Integer, Float or String. Other protocols can use it in those Params if it has set allowsPointer=True """ self._defineOutputs(**self.outputsToDefine)
def _summary(self): summary = [] return summary def _validate(self): errors = [] if self.inputMicrographs.get().getSamplingRate() == None: errors.append('The input micrographs do not have a sampling rate') return errors
[docs]def transform2EvenNumber(var): if var % 2 != 0: var = round(var / 2) * 2 return var