Source code for pyworkflow.protocol.executor

# **************************************************************************
# *
# * Authors:     J.M. De la Rosa Trevin (jmdelarosa@cnb.csic.es)
# *
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia, CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 3 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address 'scipion@cnb.csic.es'
# *
# **************************************************************************
"""
This module have the classes for execution of protocol steps.
The basic one will run steps, one by one, after completion.
There is one based on threads to execute steps in parallel
using different threads and the last one with MPI processes.
"""

import logging
logger = logging.getLogger(__name__)
import time
import datetime
import threading
import os

import pyworkflow.utils.process as process
from pyworkflow.utils.path import getParentFolder, removeExt
from . import constants as cts

from .launch import _submit, UNKNOWN_JOBID, _checkJobStatus


[docs]class StepExecutor: """ Run a list of Protocol steps. """ def __init__(self, hostConfig, **kwargs): self.hostConfig = hostConfig self.gpuList = kwargs.get(cts.GPU_LIST, None) self.protocol = None
[docs] def getGpuList(self): """ Return the GPU list assigned to current thread. """ return self.gpuList
[docs] def setProtocol(self, protocol): """ Set protocol to append active jobs to its jobIds. """ self.protocol = protocol
[docs] def runJob(self, log, programName, params, numberOfMpi=1, numberOfThreads=1, env=None, cwd=None, executable=None): """ This function is a wrapper around runJob, providing the host configuration. """ process.runJob(log, programName, params, numberOfMpi, numberOfThreads, self.hostConfig, env=env, cwd=cwd, gpuList=self.getGpuList(), executable=executable)
def _getRunnable(self, steps, n=1): """ Return the n steps that are 'new' and all its dependencies have been finished, or None if none ready. """ rs = [] # return a list of runnable steps for s in steps: if (s.getStatus() == cts.STATUS_NEW and all(steps[i-1].isFinished() for i in s._prerequisites)): if self._isStepRunnable(s): rs.append(s) if len(rs) == n: break return rs def _isStepRunnable(self, step): """ Should be implemented by inherited classes to test extra conditions """ return True def _arePending(self, steps): """ Return True if there are pending steps (either running or waiting) that can be done and thus enable other steps to be executed. """ return any(s.isRunning() or s.isWaiting() for s in steps)
[docs] def runSteps(self, steps, stepStartedCallback, stepFinishedCallback, stepsCheckCallback, stepsCheckSecs=3): # Even if this will run the steps in a single thread # let's follow a similar approach than the parallel one # In this way we can take into account the steps graph # dependency and also the case when using streaming delta = datetime.timedelta(seconds=stepsCheckSecs) lastCheck = datetime.datetime.now() while True: # Get a step to run, if there is any runnableSteps = self._getRunnable(steps) if runnableSteps: step = runnableSteps[0] # We found a step to work in, so let's start a new # thread to do the job and book it. step.setRunning() stepStartedCallback(step) step.run() doContinue = stepFinishedCallback(step) if not doContinue: break elif self._arePending(steps): # We have not found any runnable step, but still there # there are some running or waiting for dependencies # So, let's wait a bit to check if something changes time.sleep(0.5) else: # No steps to run, neither running or waiting # So, we are done, either failed or finished :) break now = datetime.datetime.now() if now - lastCheck > delta: stepsCheckCallback() lastCheck = now stepsCheckCallback() # one last check to finalize stuff
[docs]class StepThread(threading.Thread): """ Thread to run Steps in parallel. """ def __init__(self, step, lock): threading.Thread.__init__(self) self.thId = step.getObjId() self.step = step self.lock = lock
[docs] def run(self): error = None try: self.step._run() # not self.step.run() , to avoid race conditions except Exception as e: error = str(e) logger.error("Couldn't run the code in a thread." , exc_info=e) finally: with self.lock: if error is None: self.step.setFinished() else: self.step.setFailed(error)
[docs]class ThreadStepExecutor(StepExecutor): """ Run steps in parallel using threads. """ def __init__(self, hostConfig, nThreads, **kwargs): StepExecutor.__init__(self, hostConfig, **kwargs) self.numberOfProcs = nThreads # If the gpuList was specified, we need to distribute GPUs among # all the threads self.gpuDict = {} self._assignGPUperNode() def _assignGPUperNode(self): # If we have GPUs if self.gpuList: nThreads = self.numberOfProcs # Nodes: each concurrent steps nodes = range(1, nThreads+1) # Number of GPUs nGpu = len(self.gpuList) # If more GPUs than threads if nGpu > nThreads: # Get the ratio: 2 GPUs per thread? 3 GPUs per thread? # 3 GPU and 2 threads is rounded to 1 (flooring) step = int(nGpu / nThreads) spare = nGpu % nThreads fromPos = 0 # For each node(concurrent thread) for node in nodes: # Store the GPUS per thread: # GPUs: 0 1 2 # Threads 2 (step 1) # Node 0 : GPU 0 1 # Node 1 : GPU 2 extraGpu = 1 if spare>0 else 0 toPos = fromPos + step +extraGpu gpusForNode = list(self.gpuList[fromPos:toPos]) newGpusForNode = self.cleanVoidGPUs(gpusForNode) if len(newGpusForNode) == 0: logger.info("Gpu slot cancelled: all were null Gpus -> %s" % gpusForNode) else: logger.info("GPUs %s assigned to node %s" % (newGpusForNode, node)) self.gpuDict[-node] = newGpusForNode fromPos = toPos spare-=1 else: # Expand gpuList repeating until reach nThreads items if nThreads > nGpu: logger.warning("GPUs are no longer extended. If you want all GPUs to match threads repeat as many " "GPUs as threads.") # newList = self.gpuList * (int(nThreads / nGpu) + 1) # self.gpuList = newList[:nThreads] for index, gpu in enumerate(self.gpuList): if gpu == cts.VOID_GPU: logger.info("Void GPU (%s) found in the list. Skipping the slot." % cts.VOID_GPU) else: logger.info("GPU slot for gpu %s." % gpu) # Any negative number in the key means a free gpu slot. can't be 0! self.gpuDict[-index-1] = [gpu]
[docs] def cleanVoidGPUs(self, gpuList): newGPUList=[] for gpuid in gpuList: if gpuid == cts.VOID_GPU: logger.info("Void GPU detected in %s" % gpuList) else: newGPUList.append(gpuid) return newGPUList
[docs] def getGpuList(self): """ Return the GPU list assigned to current thread or empty list if not using GPUs. """ # If the node id has assigned gpus? nodeId = threading.current_thread().thId if nodeId in self.gpuDict: gpus = self.gpuDict.get(nodeId) logger.info("Reusing GPUs (%s) slot for %s" % (gpus, nodeId)) return gpus else: gpus = self.getFreeGpuSlot(nodeId) if gpus is None: logger.warning("Step on node %s is requesting GPUs but there isn't any available. Review configuration of threads/GPUs. Returning and empty list." % nodeId) return [] else: return gpus
[docs] def getFreeGpuSlot(self, stepId=None): """ Returns a free gpu slot available or None. If node is passed it also reserves it for that node :param node: node to make the reserve of Gpus """ for node in self.gpuDict.keys(): # This is a free node. Book it if node < 0: gpus = self.gpuDict[node] if stepId is not None: self.gpuDict.pop(node) self.gpuDict[stepId] = gpus logger.info("GPUs %s assigned to step %s" % (gpus, stepId)) else: logger.info("Free gpu slot found at %s" % node) return gpus return None
[docs] def freeGpusSlot(self, node): gpus = self.gpuDict.get(node, None) # Some nodes/threads do not use gpus so may not be booked and not in the dictionary if gpus is not None: self.gpuDict.pop(node) self.gpuDict[-node] = gpus logger.info("GPUs %s freed from step %s" % (gpus, node)) else: logger.debug("step id %s not found in GPU slots" % node)
def _isStepRunnable(self, step): """ Overwrite this method to check GPUs availability""" if self.gpuList and step.needsGPU() and self.getFreeGpuSlot(step.getObjId()) is None: logger.info("Can't run step %s. Needs gpus and there are no free gpu slots" % step) return False return True
[docs] def runSteps(self, steps, stepStartedCallback, stepFinishedCallback, stepsCheckCallback, stepsCheckSecs=5): """ Creates threads and synchronize the steps execution. :param steps: list of steps to run :param stepStartedCallback: callback to be called before starting any step :param stepFinishedCallback: callback to be run after all steps are done :param stepsCheckCallback: callback to check if there are new steps to add (streaming) :param stepsCheckSecs: seconds between stepsCheckCallback calls """ delta = datetime.timedelta(seconds=stepsCheckSecs) lastCheck = datetime.datetime.now() sharedLock = threading.Lock() runningSteps = {} # currently running step in each node ({node: step}) freeNodes = list(range(1, self.numberOfProcs+1)) # available nodes to send jobs logger.info("Execution threads: %s" % freeNodes) logger.info("Running steps using %s threads. 1 thread is used for this main proccess." % self.numberOfProcs) while True: # See which of the runningSteps are not really running anymore. # Update them and freeNodes, and call final callback for step. with sharedLock: nodesFinished = [node for node, step in runningSteps.items() if not step.isRunning()] doContinue = True for node in nodesFinished: step = runningSteps.pop(node) # remove entry from runningSteps freeNodes.append(node) # the node is available now self.freeGpusSlot(step.getObjId()) # Notify steps termination and check if we should continue doContinue = stepFinishedCallback(step) if not doContinue: break if not doContinue: break anyLaunched = False # If there are available nodes, send next runnable step. with sharedLock: if freeNodes: runnableSteps = self._getRunnable(steps, len(freeNodes)) for step in runnableSteps: # We found a step to work in, so let's start a new # thread to do the job and book it. anyLaunched = True step.setRunning() stepStartedCallback(step) node = freeNodes.pop(0) # take an available node runningSteps[node] = step logger.debug("Running step %s on node %s" % (step, node)) t = StepThread(step, sharedLock) # won't keep process up if main thread ends t.daemon = True t.start() anyPending = self._arePending(steps) if not anyLaunched: if anyPending: # nothing running time.sleep(3) else: break # yeah, we are done, either failed or finished :) now = datetime.datetime.now() if now - lastCheck > delta: stepsCheckCallback() lastCheck = now stepsCheckCallback() # Wait for all threads now. for t in threading.enumerate(): if t is not threading.current_thread(): t.join()
[docs]class QueueStepExecutor(ThreadStepExecutor): def __init__(self, hostConfig, submitDict, nThreads, **kwargs): ThreadStepExecutor.__init__(self, hostConfig, nThreads, **kwargs) self.submitDict = submitDict # Command counter per thread self.threadCommands = {} if nThreads > 1: self.runJobs = ThreadStepExecutor.runSteps else: self.runJobs = StepExecutor.runSteps self.renameGpuIds()
[docs] def renameGpuIds(self): """ Reorganize the gpus ids starting from 0 since the queue engine is the one assigning them. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars """ for threadId, gpuList in self.gpuDict.items(): for i in range(len(gpuList)): self.gpuDict[threadId][i] = i logger.debug("Updated gpus ids rebase starting from 0: %s per thread" %self.gpuDict)
[docs] def getThreadJobId(self, stepId): """ Returns the job id extension assigned to each thread/step """ if not stepId in self.threadCommands: self.threadCommands[stepId] = 0 self.threadCommands[stepId] += 1 return self.threadCommands[stepId]
[docs] def runJob(self, log, programName, params, numberOfMpi=1, numberOfThreads=1, env=None, cwd=None, executable=None): threadId = threading.current_thread().thId submitDict = dict(self.hostConfig.getQueuesDefault()) submitDict.update(self.submitDict) submitDict['JOB_COMMAND'] = process.buildRunCommand(programName, params, numberOfMpi, self.hostConfig, env, gpuList=self.getGpuList()) threadJobId = self.getThreadJobId(threadId) subthreadId = '-%s-%s' % (threadId, threadJobId) submitDict['JOB_NAME'] = submitDict['JOB_NAME'] + subthreadId submitDict['JOB_SCRIPT'] = os.path.abspath(removeExt(submitDict['JOB_SCRIPT']) + subthreadId + ".job") submitDict['JOB_LOGS'] = os.path.join(getParentFolder(submitDict['JOB_SCRIPT']), submitDict['JOB_NAME']) jobid = _submit(self.hostConfig, submitDict, cwd, env) self.protocol.appendJobId(jobid) # append active jobs self.protocol._store(self.protocol._jobId) if (jobid is None) or (jobid == UNKNOWN_JOBID): logger.info("jobId is none therefore we set it to fail") raise Exception("Failed to submit to queue.") status = cts.STATUS_RUNNING wait = 3 # Check status while job running # REVIEW this to minimize the overhead in time put by this delay check while _checkJobStatus(self.hostConfig, jobid) == cts.STATUS_RUNNING: time.sleep(wait) if wait < 300: wait += 3 self.protocol.removeJobId(jobid) # After completion, remove inactive jobs. self.protocol._store(self.protocol._jobId) return status