Source code for spider.protocols.protocol_ca_pca

# **************************************************************************
# *
# * Authors:     J.M. De la Rosa Trevin (
# *
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 3 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address ''
# *
# **************************************************************************

from os.path import join

from pyworkflow.protocol.params import (IntParam, PointerParam,
                                        EnumParam, FloatParam)
from pwem.emlib.image import ImageHandler

from ..constants import CA
from ..objects import PcaFile
from .protocol_base import SpiderProtocol

[docs]class SpiderProtCAPCA(SpiderProtocol): """Protocol for Correspondence Analysis (CA) or Principal Component Analysis (PCA). CA is the preferred method of finding inter-image variations. PCA computes the distance between data vectors with Euclidean distances, while CA uses Chi-squared distance. CA is superior because it ignores differences in exposure between images, eliminating the need to rescale between images. In contrast, PCA seems to be more robust: less likely to be trapped in an infinite loop of numerical inaccuracy. For more info see: [[][SPIDER MDA documentation]] """ _label = 'ca pca' def __init__(self, **kwargs): SpiderProtocol.__init__(self, **kwargs) self._caDir = 'CA' self._caPrefix = 'cas' caFilePrefix = join(self._caDir, self._caPrefix + '_') self._params = {'ext': 'stk', 'particles': 'input_particles', 'particlesSel': 'input_particles_sel', 'outputParticles': 'output_particles', 'mask': 'mask', # TO DO: read tags in case filenames change in SPIDER procedure 'imcFile': caFilePrefix + 'IMC', 'seqFile': caFilePrefix + 'SEQ', 'eigFile': caFilePrefix + 'EIG', 'eigenimages': join(self._caDir, 'stkeigenimg'), 'reconstituted': join(self._caDir, 'stkreconstituted') } # --------------------------- DEFINE param functions ---------------------- def _defineParams(self, form): form.addSection(label='Input') form.addParam('inputParticles', PointerParam, label="Input particles", important=True, pointerClass='SetOfParticles', help='Select the input particles to perform CA, PCA, or IPCA.') form.addParam('analysisType', EnumParam, default=CA, choices=['CA', 'PCA', 'IPCA'], label='Analysis type', help='Select which type of analysis you want to perform: \n' 'correspondence analysis (CA), principal component analysis (PCA), ' 'or iterative principal component analysis (IPCA)') form.addParam('addConstant', FloatParam, default=0, condition="analysisType==%d" % CA, label='Additive constant', help='Correspondence analysis requires the data to be positive. ' 'In the case of negative values, a constant needs to be added. ' 'An additive constant of *0* means automatic.') form.addParam('numberOfFactors', IntParam, default=25, label='Number of factors', help='A 64x64 image can be expressed as a vector of 4096 dimensions. ' 'In this step, we will reduce this number of dimensions to the ' 'number of factors specified here. ' 'These factors will represent the largest systematic variations in the data.') form.addParam('maskType', EnumParam, choices=['circular', 'object'], default=0, display=EnumParam.DISPLAY_HLIST, label='Mask type', help='Select which type of mask do you want to apply. ' 'Only the pixels beneath this mask will be analyzed. ' 'In the simplest case, a circular mask can be used. ' 'Alternatively, a custom mask can be used ' 'which follows the contour of the particle (but not too tightly).') form.addParam('radius', IntParam, default=-1, label='Mask radius (px)', condition='maskType==0', help='If -1, the entire image (in pixels) will be considered.') form.addParam('maskImage', PointerParam, label="Mask image", condition='maskType==1', pointerClass='Mask', help="Select a mask file") form.addParallelSection(threads=1, mpi=0) # --------------------------- INSERT steps functions ---------------------- def _insertAllSteps(self): # Insert processing steps self._insertFunctionStep('convertInput', 'inputParticles', self._getFileName('particles'), self._getFileName('particlesSel')) if self.maskType > 0: self._insertFunctionStep('convertMaskStep', self.maskImage.get().getObjId()) else: self.maskImage.set(None) self._insertFunctionStep('capcaStep', self.analysisType.get(), self.numberOfFactors.get(), self.maskType.get()) self._insertFunctionStep('createOutputStep') # --------------------------- STEPS functions -----------------------------
[docs] def convertMaskStep(self, maskType): """ Convert the input mask if needed.""" # Copy mask if selected if maskType > 0: # mask from file maskFn = self._getFileName('mask') ImageHandler().convert(self.maskImage.get().getLocation(), (1, maskFn))
[docs] def capcaStep(self, analysisType, numberOfFactors, maskType): """ Apply the selected filter to particles. Create the set of particles. """ dim = self.inputParticles.get().getDimensions()[0] self._params.update({'[idim]': dim, '[radius]': self.radius.get(), '[cas-option]': analysisType + 1, # Index starts at 0 '[add-constant]': self.addConstant.get(), '[num-factors]': numberOfFactors, '[selection_doc]': self._params['particlesSel'], '[particles]': self._params['particles'] + '@******', '[custom_mask]': self._params['mask'] + '@1', '[ca_dir]': self._caDir, '[eigen_img]': self._params['eigenimages'], '[reconstituted_img]': self._params['reconstituted'], '[nummps]': self.numberOfThreads.get() }) self.runTemplate('mda/ca-pca.msa', self.getExt(), self._params)
[docs] def createOutputStep(self): # Generate outputs imc = PcaFile() imc.filename.set(self._getFileName('imcFile')) seq = PcaFile() seq.filename.set(self._getFileName('seqFile')) self._defineOutputs(imcFile=imc, seqFile=seq) self._defineSourceRelation(self.inputParticles, imc) self._defineSourceRelation(self.inputParticles, seq)
# --------------------------- INFO functions ------------------------------ def _summary(self): summary = [] if self.analysisType == 0: summary.append('Analysis type: *Correspondence analysis*') if self.addConstant != 0: summary.append(' Additive constant: *%s*' % self.addConstant) else: summary.append(' Additive constant: *Auto*') if self.analysisType == 1: summary.append('Analysis type: *Principal component analysis*') if self.analysisType == 2: summary.append('Analysis type: *Iterative principal component analysis*') summary.append('Number of factors: *%s*' % self.numberOfFactors) if self.maskType == 0: # circular mask if self.radius == -1: summary.append('Mask: *Circular, of radius 1/2 image dimension*') else: summary.append('Mask: *Circular, of radius: %s*' % self.radius) else: # custom mask summary.append('Mask: *Custom file*') return summary def _methods(self): msg = "\nInput particles %s were subjected to " %\ self.getObjectTag('inputParticles') if self.analysisType == 0: msg += "correspondence analysis, " if self.analysisType == 1: msg += "principal component analysis, " if self.analysisType == 2: msg += "iterative principal component analysis, " msg += "computing %s factors, and using a " % self.numberOfFactors if self.maskType == 0: # circular mask if self.radius == -1: msg += "circular mask of radius half the image dimension." else: msg += "circular mask of radius %s pixels." % self.radius else: # custom mask msg += "custom mask %s." % self.getObjectTag('maskImage') return [msg]