Source code for pwem.convert.symmetry

# **************************************************************************
# *
# * Authors:     Roberto Marabini
# *
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 3 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address 'scipion@cnb.csic.es'
# *
# **************************************************************************
"""
This module returns the matrices related with the different
point symmetries. Code based on chimera file sym.py
"""

from math import sin, cos, pi, acos, sqrt, asin
import numpy as np
from numpy.linalg import inv as matrix_inverse
from numpy import dot as matrix_multiply
import operator

import pwem.constants as cts


def _applyMatrix(tf, points):
    """
    Args:multiply point by a matrice list """

    tf = np.array(tf)
    r = matrix_multiply(points, np.transpose(tf[:, :3]))
    np.add(r, tf[:, 3], r)
    return r


def __length(v):
    d = sqrt(sum([e*e for e in v]))
    return d


def _normalizeVector(v):
    d = __length(v)
    if d == 0:
        d = 1
    return tuple([e/d for e in v])


def _rotationTransform(axis, angle, center=(0, 0, 0)):
    """ Angle is in degrees. """
    axis = _normalizeVector(axis)

    arad = angle*pi/180.0
    sa = sin(arad)
    ca = cos(arad)
    k = 1 - ca
    ax, ay, az = axis
    tf = ((1 + k*(ax*ax-1), -az*sa+k*ax*ay, ay*sa+k*ax*az, 0),
          (az*sa+k*ax*ay, 1 + k*(ay*ay-1), -ax*sa+k*ay*az, 0),
          (-ay*sa+k*ax*az, ax*sa+k*ay*az, 1 + k*(az*az-1), 0))
    cx, cy, cz = center
    c_tf = ((1, 0, 0, cx), (0, 1, 0, cy), (0, 0, 1, cz))
    inv_c_tf = ((1, 0, 0, -cx), (0, 1, 0, -cy), (0, 0, 1, -cz))
    rtf = _multiplyMatrices(c_tf, tf, inv_c_tf)
    return rtf


def _translationMatrix(shift):

    tf = np.array(((1.0, 0, 0, shift[0]),
                   (0, 1.0, 0, shift[1]),
                   (0, 0, 1.0, shift[2])))
    return tf


def _identityMatrix():

    return (1.0, 0, 0, 0), (0, 1.0, 0, 0), (0, 0, 1.0, 0)


def _invertMatrix(tf):

    tf = np.array(tf)
    r = tf[:, :3]
    t = tf[:, 3]
    tfinv = np.zeros((3, 4), np.float)
    rinv = tfinv[:, :3]
    tinv = tfinv[:, 3]
    rinv[:, :] = matrix_inverse(r)
    tinv[:] = matrix_multiply(rinv, -t)
    return tfinv


def _multiplyMatrices(*mlist):

    if len(mlist) == 2:
        m1, m2 = mlist
        p = [[0, 0, 0, 0],
             [0, 0, 0, 0],
             [0, 0, 0, 0]]
        for r in range(3):
            for c in range(4):
                p[r][c] = m1[r][0]*m2[0][c] + m1[r][1]*m2[1][c] + m1[r][2]*m2[2][c]
            p[r][3] += m1[r][3]
        p = tuple(map(tuple, p))
    else:
        p = _multiplyMatrices(*mlist[1:])
        p = _multiplyMatrices(mlist[0], p)
    return p


def _matrixProducts(mlist1, mlist2):
    plist = []
    for m1 in mlist1:
        for m2 in mlist2:
            m1xm2 = _multiplyMatrices(m1, m2)
            plist.append(m1xm2)
    return plist


def _coordinateTransformList(tflist, ctf):

    ctfinv = _invertMatrix(ctf)
    return [_multiplyMatrices(ctfinv, tf, ctf) for tf in tflist]


def _recenterSymmetries(tflist, center):

    if center == (0, 0, 0):
        return tflist
    ctf = _translationMatrix([-x for x in center])
    return _coordinateTransformList(tflist, ctf)


def _transposeMatrix(tf):

    return ((tf[0][0], tf[1][0], tf[2][0], tf[0][3]),
            (tf[0][1], tf[1][1], tf[2][1], tf[1][3]),
            (tf[0][2], tf[1][2], tf[2][2], tf[2][3]))


[docs]def getSymmetryMatrices(sym=cts.SYM_CYCLIC, n=1, center=(0, 0, 0)): """ interface between scipion and chimera code chimera code uses tuples of tuples as matrices but scipion uses np.arrays (lists of lists) so let us convert them here """ if sym == cts.SYM_CYCLIC: matrices = __cyclicSymmetrySatrices(n, center) elif sym == cts.SYM_DIHEDRAL: matrices = __dihedralSymmetryMatrices(n, center) elif sym == cts.SYM_OCTAHEDRAL: matrices = __octahedralSymmetryMatrices(center) elif sym == cts.SYM_TETRAHEDRAL or sym == cts.SYM_TETRAHEDRAL_Z3: matrices = __tetrahedralSymmetryMatrices(cts.SYM_TETRAHEDRAL_Z3, center) elif (sym == cts.SYM_I222 or sym == cts.SYM_I222r or sym == cts.SYM_In25 or sym == cts.SYM_In25r): matrices = __icosahedralSymmetryMatrices(sym, center) # convert from 4x 3 to 4x4 matrix, Scipion standard extraRow = (0., 0., 0., 1.) for i in range(len(matrices)): matrices[i] += (extraRow,) # convert from sets to lists Scipion standard return np.array(matrices)
def __cyclicSymmetrySatrices(n, center=(0, 0, 0)): """ Rotation about z axis. This is a local method. do not access directly to it """ tflist = [] for k in range(n): a = 2*pi * np.float32(k) / n c = cos(a) s = sin(a) tf = ((c, -s, 0, 0), (s, c, 0, 0), (0, 0, 1, 0)) tflist.append(tf) tflist = _recenterSymmetries(tflist, center) return tflist def __octahedralSymmetryMatrices(center=(0, 0, 0)): """ 4-folds along x, y, z axes. """ c4 = (((0, 0, 1), 0), ((0, 0, 1), 90), ((0, 0, 1), 180), ((0, 0, 1), 270)) cube = (((1, 0, 0), 0), ((1, 0, 0), 90), ((1, 0, 0), 180), ((1, 0, 0), 270), ((0, 1, 0), 90), ((0, 1, 0), 270)) c4syms = [_rotationTransform(axis, angle) for axis, angle in c4] cubesyms = [_rotationTransform(axis, angle) for axis, angle in cube] syms = _matrixProducts(cubesyms, c4syms) syms = _recenterSymmetries(syms, center) return syms def __dihedralSymmetryMatrices(n, center=(0, 0, 0)): """ Rotation about z axis, reflection about x axis. """ clist = __cyclicSymmetrySatrices(n) reflect = ((1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0)) tflist = _matrixProducts([_identityMatrix(), reflect], clist) tflist = _recenterSymmetries(tflist, center) return tflist def __tetrahedralSymmetryMatrices(orientation=cts.SYM_TETRAHEDRAL, center=(0, 0, 0)): """ identity 4 * rotation by 120 clockwise (seen from a vertex): (234), (143), (412), (321) 4 * rotation by 120 counterclockwise (ditto) 3 * rotation by 180 """ aa = (((0, 0, 1), 0), ((1, 0, 0), 180), ((0, 1, 0), 180), ((0, 0, 1), 180), ((1, 1, 1), 120), ((1, 1, 1), 240), ((-1, -1, 1), 120), ((-1, -1, 1), 240), ((-1, 1, -1), 120), ((-1, 1, -1), 240), ((1, -1, -1), 120), ((1, -1, -1), 240)) syms = [_rotationTransform(axis, angle) for axis, angle in aa] if orientation == cts.SYM_TETRAHEDRAL_Z3: # EMAN convention, 3-fold on z, 3-fold in yz plane along neg y. tf = _multiplyMatrices( _rotationTransform((0, 0, 1), -45.0), _rotationTransform((1, 0, 0), -acos(1 / sqrt(3)) * 180 / pi)) syms = _coordinateTransformList(syms, tf) syms = _recenterSymmetries(syms, center) return syms def __icosahedralSymmetryMatrices(orientation=cts.SYM_I222, center=(0, 0, 0)): if orientation == cts.SYM_I222: sym = '222' elif orientation == cts.SYM_I222r: sym = '222r' elif orientation == cts.SYM_In25: sym = 'n25' elif orientation == cts.SYM_In25r: sym = 'n25r' i = Icosahedron(orientation=sym, center=center) return list(i.icosahedralSymmetryMatrices()) icos_matrices = {} # Maps orientation name to 60 matrices.
[docs]class Icosahedron(object): def __init__(self, circumscribed_radius=1, orientation='222', center=( 0, 0, 0)): """point = np.array([0, 1, PHI]""" self.circumscribed_radius = circumscribed_radius self.orientation = orientation self.center = center # Triangle edge length of unit icosahedron. self.e = sqrt(2 - 2 / sqrt(5)) self.vertices = None # icosahedron vertices self.triangles = None # icosahedron faces self._3foldAxis = [] self._2foldAxis = [] self.edges = None # icosahedron edges # --------------------------------------------------------------------------------------------- # Coordinates systems. # '222' 2-fold symmetry along x, y, and z axes. # '222r' '222' with 90 degree rotation around z. # '2n5' 2-fold symmetry along x and 5-fold along z. # '2n5r' '2n5' with 180 degree rotation about y. # 'n25' 2-fold symmetry along y and 5-fold along z. # 'n25r' 'n25' with 180 degree rotation about x. # '2n3' 2-fold symmetry along x and 3-fold along z. # '2n3r' '2n3' with 180 degree rotation about y. # self.coordinate_system_names = ('222', '222r', '2n5', '2n5r', 'n25', 'n25r', '2n3', '2n3r') self.icosahedronEdgeLength = \ self.icosahedronEdgeLength(circumscribed_radius) self.angle23, self.angle25, self.angle35 = self.icosahedronAngles() self.icosahedronGeometry() # --------------------------------------------------------------------------------------------- # 60 icosahedral symmetry matrices. #
[docs] def icosahedralSymmetryMatrices(self): t = self.icosahedralMatrixTable() tflist = _recenterSymmetries(t.get(self.orientation, None), self.center) return tflist
# ------------------------------------------------------------------------- # Edge length of icosahedron with a certain radio of the circumscribed # sphere: # According to Radio of the circumscribed sphere = 1 (vertices), # the icosahedronEdgeLength should be 1.0515
[docs] def icosahedronEdgeLength(self, circumscribed_radius): return 4 * circumscribed_radius / sqrt(10 + 2 * sqrt(5))
# ------------------------------------------------------------------------- # Matrices for mapping between different icosahedron coordinate frames. #
[docs] def coordinateSystemTransform(self, from_cs, to_cs): self.cst = {} if self.cst: return self.cst[(from_cs, to_cs)] transform = self.cst s25 = self.e / 2 # Sin/Cos for angle between 2-fold and 5-fold axis c25 = sqrt(1 - s25 * s25) # Sin/Cos for angle between 3-fold and 5-fold axis s35 = self.e / sqrt(3) c35 = sqrt(1 - s35 * s35) transform[('2n5', '222')] = ((1, 0, 0, 0), (0, c25, -s25, 0), (0, s25, c25, 0)) transform[('2n5', '2n3')] = ((1, 0, 0, 0), (0, c35, s35, 0), (0, -s35, c35, 0)) # Axes permutations. # 90 degree rotation about z transform[('222', '222r')] = ((0, 1, 0, 0), (-1, 0, 0, 0), (0, 0, 1, 0)) # 180 degree rotation about y transform[('2n3', '2n3r')] = \ transform[('2n5', '2n5r')] = ((-1, 0, 0, 0), (0, 1, 0, 0), (0, 0, -1, 0)) # 180 degree rotation about x transform[('n25', 'n25r')] = ((1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0)) # x <-> y and z -> -z transform[('n25', '2n5')] = ((0, 1, 0, 0), (1, 0, 0, 0), (0, 0, -1, 0)) # Extend to all pairs of transforms. tlist = [] while len(transform) > len(tlist): tlist = list(transform.keys()) # Add inverse transforms for key in tlist: f = key[0] t = key[1] if not (t, f) in transform: transform[(t, f)] = _transposeMatrix(transform[(f, t)]) # Use transitivity for key1 in tlist: f1 = key1[0] t1 = key1[1] for key2 in tlist: f2 = key2[0] t2 = key2[1] if f2 == t1 and f1 != t2 and not (f1, t2) in transform: transform[(f1, t2)] = _multiplyMatrices(transform[( f2, t2)], transform[(f1, t1)]) i = _identityMatrix() for s in self.coordinate_system_names: transform[(s, s)] = i return transform[(from_cs, to_cs)]
# --------------------------------------------------------------------------------------- # Compute icosahedral transformation matrices for different # coordinate systems. #
[docs] def icosahedralMatrixTable(self): global icos_matrices if icos_matrices: return icos_matrices c = cos(2 * pi / 5) # .309016994 c2 = cos(4 * pi / 5) # -.809016994 icos_matrices['222'] = ( ((1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0)), ((c2, -0.5, c, 0.0), (-0.5, c, c2, 0.0), (c, c2, -0.5, 0.0)), ((0.0, 1.0, 0.0, 0.0), (0.0, 0.0, -1.0, 0.0), (-1.0, 0.0, 0.0, 0.0)), ((-c2, -0.5, -c, 0.0), (-0.5, -c, c2, 0.0), (c, -c2, -0.5, 0.0)), ((0.5, c, c2, 0.0), (-c, c2, -0.5, 0.0), (c2, 0.5, -c, 0.0)), ((-c, c2, -0.5, 0.0), (c2, 0.5, -c, 0.0), (0.5, c, c2, 0.0)), ((c2, 0.5, -c, 0.0), (0.5, c, c2, 0.0), (-c, c2, -0.5, 0.0)), ((c2, -0.5, -c, 0.0), (0.5, -c, c2, 0.0), (c, c2, 0.5, 0.0)), ((-c, -c2, -0.5, 0.0), (c2, -0.5, -c, 0.0), (-0.5, c, -c2, 0.0)), ((0.5, -c, c2, 0.0), (-c, -c2, -0.5, 0.0), (-c2, 0.5, c, 0.0)), ((0.0, 0.0, -1.0, 0.0), (-1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0)), ((-0.5, -c, c2, 0.0), (c, -c2, -0.5, 0.0), (-c2, -0.5, -c, 0.0)), ((-0.5, c, c2, 0.0), (c, c2, -0.5, 0.0), (c2, -0.5, c, 0.0)), ((-c, c2, -0.5, 0.0), (-c2, -0.5, c, 0.0), (-0.5, -c, -c2, 0.0)), ((c2, 0.5, -c, 0.0), (-0.5, -c, -c2, 0.0), (c, -c2, 0.5, 0.0)), ((0.5, c, c2, 0.0), (c, -c2, 0.5, 0.0), (-c2, -0.5, c, 0.0)), ((-0.5, c, c2, 0.0), (-c, -c2, 0.5, 0.0), (-c2, 0.5, -c, 0.0)), ((0.0, 0.0, -1.0, 0.0), (1.0, 0.0, 0.0, 0.0), (0.0, -1.0, 0.0, 0.0)), ((-0.5, -c, c2, 0.0), (-c, c2, 0.5, 0.0), (c2, 0.5, c, 0.0)), ((0.0, -1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0), (-1.0, 0.0, 0.0, 0.0)), ((c2, 0.5, c, 0.0), (0.5, c, -c2, 0.0), (c, -c2, -0.5, 0.0)), ((-c2, 0.5, -c, 0.0), (0.5, -c, -c2, 0.0), (c, c2, -0.5, 0.0)), ((-c, -c2, -0.5, 0.0), (-c2, 0.5, c, 0.0), (0.5, -c, c2, 0.0)), ((0.5, -c, c2, 0.0), (c, c2, 0.5, 0.0), (c2, -0.5, -c, 0.0)), ((c2, -0.5, -c, 0.0), (-0.5, c, -c2, 0.0), (-c, -c2, -0.5, 0.0)), ((-c, c2, 0.5, 0.0), (c2, 0.5, c, 0.0), (-0.5, -c, c2, 0.0)), ((-c, -c2, 0.5, 0.0), (-c2, 0.5, -c, 0.0), (-0.5, c, c2, 0.0)), ((1.0, 0.0, 0.0, 0.0), (0.0, -1.0, 0.0, 0.0), (0.0, 0.0, -1.0, 0.0)), ((c, -c2, -0.5, 0.0), (-c2, -0.5, -c, 0.0), (-0.5, -c, c2, 0.0)), ((c, c2, -0.5, 0.0), (c2, -0.5, c, 0.0), (-0.5, c, c2, 0.0)), ((-1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0, -1.0, 0.0)), ((-c2, 0.5, -c, 0.0), (-0.5, c, c2, 0.0), (-c, -c2, 0.5, 0.0)), ((0.0, -1.0, 0.0, 0.0), (0.0, 0.0, -1.0, 0.0), (1.0, 0.0, 0.0, 0.0)), ((c2, 0.5, c, 0.0), (-0.5, -c, c2, 0.0), (-c, c2, 0.5, 0.0)), ((-0.5, -c, -c2, 0.0), (-c, c2, -0.5, 0.0), (-c2, -0.5, c, 0.0)), ((c, -c2, 0.5, 0.0), (c2, 0.5, -c, 0.0), (-0.5, -c, -c2, 0.0)), ((-c2, -0.5, c, 0.0), (0.5, c, c2, 0.0), (c, -c2, 0.5, 0.0)), ((-c2, 0.5, c, 0.0), (0.5, -c, c2, 0.0), (-c, -c2, -0.5, 0.0)), ((c, c2, 0.5, 0.0), (c2, -0.5, -c, 0.0), (0.5, -c, c2, 0.0)), ((-0.5, c, -c2, 0.0), (-c, -c2, -0.5, 0.0), (c2, -0.5, -c, 0.0)), ((0.0, 0.0, 1.0, 0.0), (-1.0, 0.0, 0.0, 0.0), (0.0, -1.0, 0.0, 0.0)), ((0.5, c, -c2, 0.0), (c, -c2, -0.5, 0.0), (c2, 0.5, c, 0.0)), ((0.5, -c, -c2, 0.0), (c, c2, -0.5, 0.0), (-c2, 0.5, -c, 0.0)), ((c, -c2, 0.5, 0.0), (-c2, -0.5, c, 0.0), (0.5, c, c2, 0.0)), ((-c2, -0.5, c, 0.0), (-0.5, -c, -c2, 0.0), (-c, c2, -0.5, 0.0)), ((-0.5, -c, -c2, 0.0), (c, -c2, 0.5, 0.0), (c2, 0.5, -c, 0.0)), ((0.5, -c, -c2, 0.0), (-c, -c2, 0.5, 0.0), (c2, -0.5, c, 0.0)), ((0.0, 0.0, 1.0, 0.0), (1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0)), ((0.5, c, -c2, 0.0), (-c, c2, 0.5, 0.0), (-c2, -0.5, -c, 0.0)), ((0.0, 1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0), (1.0, 0.0, 0.0, 0.0)), ((-c2, -0.5, -c, 0.0), (0.5, c, -c2, 0.0), (-c, c2, 0.5, 0.0)), ((c2, -0.5, c, 0.0), (0.5, -c, -c2, 0.0), (-c, -c2, 0.5, 0.0)), ((c, c2, 0.5, 0.0), (-c2, 0.5, c, 0.0), (-0.5, c, -c2, 0.0)), ((-0.5, c, -c2, 0.0), (c, c2, 0.5, 0.0), (-c2, 0.5, c, 0.0)), ((-c2, 0.5, c, 0.0), (-0.5, c, -c2, 0.0), (c, c2, 0.5, 0.0)), ((c, -c2, -0.5, 0.0), (c2, 0.5, c, 0.0), (0.5, c, -c2, 0.0)), ((c, c2, -0.5, 0.0), (-c2, 0.5, -c, 0.0), (0.5, -c, -c2, 0.0)), ((-1.0, 0.0, 0.0, 0.0), (0.0, -1.0, 0.0, 0.0), (0.0, 0.0, 1.0, 0.0)), ((-c, c2, 0.5, 0.0), (-c2, -0.5, -c, 0.0), (0.5, c, -c2, 0.0)), ((-c, -c2, 0.5, 0.0), (c2, -0.5, c, 0.0), (0.5, -c, -c2, 0.0)), ) for cs in self.coordinate_system_names: if cs != '222': t = self.coordinateSystemTransform(cs, '222') tinv = self.coordinateSystemTransform('222', cs) icos_matrices[cs] = [_multiplyMatrices(tinv, m, t) for m in icos_matrices['222']] return icos_matrices
# -----------------------------------------------------------------------------
[docs] def icosahedronAngles(self): # Angles between 2-fold, 3-fold and 5-fold # symmetry axes of an icosahedron. angle25 = asin(self.e/2) angle35 = asin(self.e/sqrt(3)) angle23 = asin(self.e/(2*sqrt(3))) return angle23, angle25, angle35
[docs] def icosahedronGeometry(self): a = 2 * self.angle25 # Angle spanned by edge from center # 5-fold symmetry axis along z c5 = cos(2 * pi / 5) s5 = sin(2 * pi / 5) tf5 = ((c5, -s5, 0, 0), (s5, c5, 0, 0), (0, 0, 1, 0)) # 2-fold symmetry axis along x tf2 = ((1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0)) p = tuple(map(operator.add, self.center, (0, 0, self.circumscribed_radius))) p50 = tuple(map(operator.add, self.center, (0, self.circumscribed_radius * sin(a), self.circumscribed_radius * cos(a)))) p51 = _applyMatrix(tf5, p50) p52 = _applyMatrix(tf5, p51) p53 = _applyMatrix(tf5, p52) p54 = _applyMatrix(tf5, p53) self.vertices = [p, p50, p51, p52, p53, p54] self.vertices.extend([_applyMatrix(tf2, q) for q in self.vertices]) if self.orientation != '2n5': self.tf = self.coordinateSystemTransform('2n5', self.orientation) self.vertices = [_applyMatrix(self.tf, p) for p in self.vertices] # # Vertex numbering # # Top 1 Bottom # 2 5 9 10 # 0 6 # 3 4 8 11 # 7 # 20 triangles composing icosahedron. # self.triangles = ((0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 5, 1), (6, 7, 8), (6, 8, 9), (6, 9, 10), (6, 10, 11), (6, 11, 7), (1, 9, 2), (2, 9, 8), (2, 8, 3), (3, 8, 7), (3, 7, 4), (4, 7, 11), (4, 11, 5), (5, 11, 10), (5, 10, 1), (1, 10, 9)) for triangle in self.triangles: self._3foldAxis.append([(item1 + item2 + item3) / 3. for item1, item2, item3 in zip(self.vertices[triangle[0]], self.vertices[triangle[1]], self.vertices[triangle[2]])]) self.edges = ((0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (6, 7), (6, 8), (6, 9), (6, 10), (6, 11), (1, 9), (2, 8), (2, 9), (3, 7), (3, 8), (7, 8), (8, 9), (9, 10), (10, 11), (11, 7), (4, 7), (4, 11), (5, 10), (5, 11), (1, 10)) for edge in self.edges: self._2foldAxis.append([(item1 + item2) / 2. for item1, item2 in zip(self.vertices[edge[0]], self.vertices[edge[1]])])
[docs] def getVertices(self): return self.vertices
[docs] def getTriangles(self): return self.triangles
[docs] def getEdges(self): return self.edges
[docs] def get3foldAxis(self): return self._3foldAxis
[docs] def get2foldAxis(self): return self._2foldAxis