Source code for cryosparc2.protocols.protocol_cryosparc_3D_classification

# **************************************************************************
# *
# * Authors: Yunior C. Fonseca Reyna    (cfonseca@cnb.csic.es)
# *
# *
# * Unidad de  Bioinformatica of Centro Nacional de Biotecnologia , CSIC
# *
# * This program is free software; you can redistribute it and/or modify
# * it under the terms of the GNU General Public License as published by
# * the Free Software Foundation; either version 2 of the License, or
# * (at your option) any later version.
# *
# * This program is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# * GNU General Public License for more details.
# *
# * You should have received a copy of the GNU General Public License
# * along with this program; if not, write to the Free Software
# * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
# * 02111-1307  USA
# *
# *  All comments concerning this program package may be sent to the
# *  e-mail address 'scipion@cnb.csic.es'
# *
# **************************************************************************
import os

import pyworkflow.utils as pwutils
from pyworkflow.protocol.params import (FloatParam, LEVEL_ADVANCED,
                                        PointerParam, MultiPointerParam,
                                        CsvList, Positive, IntParam,
                                        BooleanParam, StringParam, EnumParam)

from .protocol_base import ProtCryosparcBase
from ..convert import (convertBinaryVol, defineArgs, convertCs2Star,
                       rowToAlignment, ALIGN_PROJ, cryosparcToLocation)
from ..utils import (addSymmetryParam, addComputeSectionParams, doImportVolumes,
                     get_job_streamlog, calculateNewSamplingRate,
                     cryosparcValidate, gpusValidate, getSymmetry, enqueueJob,
                     waitForCryosparc, clearIntermediateResults)
from ..constants import *


[docs]class ProtCryoSparc3DClassification(ProtCryosparcBase): """ Heterogeneous Refinement simultaneously classifies particles and refines structures from n initial structures, usually obtained following an Ab-Initio Reconstruction. This facilitates the ability to look for small differences between structures which may not be obvious at low resolutions, and also to re-classify particles to aid in sorting. """ _label = '3D classification' _className = "hetero_refine" def _initialize(self): self._defineFileNames() def _defineFileNames(self): """ Centralize how files are called. """ myDict = { 'input_particles': self._getTmpPath('input_particles.star'), 'out_particles': self._getExtraPath('output_particle.star'), 'stream_log': self._getPath() + '/stream.log', 'out_class': self._getExtraPath() + '/output_class.star' } self._updateFilenamesDict(myDict) def _defineParams(self, form): form.addSection(label='Input') form.addParam('inputParticles', PointerParam, pointerClass='SetOfParticles', label="Input particles", important=True, validators=[Positive], help='Select the input images from the project.') form.addParam('refVolumes', MultiPointerParam, pointerClass='Volume', important=True, label="Initial volumes", help='Multiple initial volumes to refine and classify. ' 'The same input volume can be connected multiple ' 'times.') # --------------[Heterogeneous Refinement]--------------------------- form.addSection(label='Heterogeneous Refinement') form.addParam('multirefine_N', IntParam, default=128, label="Refinement box size (Voxels)", help='Box size of each volume during refinement. ' 'Particles will automatically be downsampled ' '(Fourier cropped) to this box size on the fly. ' 'Keep this as small as possible to limit GPU ' 'memory usage.') addSymmetryParam(form, help="Symmetry String (C, D, I, O, T). E.g. " "C1, D7, C4, etc. Symmetry is applied to " "all classes.") form.addParam('multirefine_sharp_bfactor', IntParam, default=-100, label="Plotting bfactor", help='B-Factor to apply to the structures before ' 'plotting, to enhance medium/high resolution ' 'detail in plots. Outputs are not affected by this ' 'parameter.') form.addParam('multirefine_force_hard_class', BooleanParam, expertLevel=LEVEL_ADVANCED, default=False, label="Force hard classification", help='Force hard classification, so that each particle ' 'is only assigned to one class at every iteration, ' 'rather than having partial assignment to all ' 'classes.') form.addParam('multirefine_batch_size_per_class', IntParam, default=1000, expertLevel=LEVEL_ADVANCED, label="Batch size per class", help='Number of images per class used in each batch (one ' 'batch per iteration of online-EM). Larger values ' 'slow the algorithm down but can provide better ' 'classification results.') form.addParam('multirefine_update_rule', StringParam, default="online_em", expertLevel=LEVEL_ADVANCED, label="Optimization method", help='Optimization method to use.') form.addParam('multirefine_online_em_lr_rand', FloatParam, default=0.2, expertLevel=LEVEL_ADVANCED, label="O-EM learning rate during randomization", help='Not recommended to change.') form.addParam('multirefine_online_em_lr_init', FloatParam, default=0.1, expertLevel=LEVEL_ADVANCED, label="O-EM learning rate init", help='Not recommended to change.') form.addParam('multirefine_online_em_lr_hl', IntParam, default=50, expertLevel=LEVEL_ADVANCED, label="O-EM learning rate halflife (iters)", help='Not recommended to change.') form.addParam('multirefine_halfmap_decay', FloatParam, default=0.9, expertLevel=LEVEL_ADVANCED, label="Halfmap decay constant", help='Not recommended to change.') form.addParam('multirefine_res_init', FloatParam, expertLevel=LEVEL_ADVANCED, default=20, label="Initial resolution (A)", help='Initial low-pass resolution applied to input ' 'volumes before classification or reconstruction.') form.addParam('multirefine_bp_res_factor', FloatParam, expertLevel=LEVEL_ADVANCED, default=1.5, label="Backprojection resolution factor", help='Backproject at this multiple of the best resolution ' 'amongst classes. Not recommended to change.') form.addParam('multirefine_use_max_fsc', BooleanParam, expertLevel=LEVEL_ADVANCED, default=True, label="Use max FSC over classes for filtering", help='Use the maximum FSC across classes to filter all ' 'classes. This prevents smaller classes from being ' 'over-filtered during reconstruction.') form.addParam('multirefine_assignment_conv_eps', FloatParam, expertLevel=LEVEL_ADVANCED, default=0.05, label="Assignment convergence criteria", help='Fraction of the batch that is allowed to have ' 'changed classes in the past iteration to be ' 'considered converged.') form.addParam('multirefine_assignment_conv_eps', IntParam, expertLevel=LEVEL_ADVANCED, default=1, label="Resolution convergence criteria", help='Maximum change in resolution (in Fourier shells) ' 'between iterations to be considered converged.') form.addParam('multirefine_num_rand_assign_iters', IntParam, expertLevel=LEVEL_ADVANCED, default=5, label="Number of initial random assignment iterations", help='Number of iterations to perform initially with ' 'random assignments to break symmetry of multiple ' 'identical initial references.') form.addParam('multirefine_num_final_full_iters', IntParam, expertLevel=LEVEL_ADVANCED, default=2, label="Number of final full iterations", help='Number of final full iterations through the entire ' 'dataset. Generally 2 iterations is enough.') form.addParam('multirefine_noise_model', EnumParam, expertLevel=LEVEL_ADVANCED, choices=['symmetric', 'white', 'coloured'], default=0, label='Noise model', help='Noise model to use. Valid options are white, ' 'coloured or symmetric. Symmetric is the default, ' 'meaning coloured with radial symmetry. ' 'Not recommended to change.') form.addParam('multirefine_noise_init_sigmascale', IntParam, expertLevel=LEVEL_ADVANCED, default=3, label="Noise initial sigma-scale", help='Scale factor initially applied to the base noise ' 'estimate. Not recommended to change.') # --------------[Compute settings]--------------------------- form.addSection(label="Compute settings") addComputeSectionParams(form, allowMultipleGPUs=False) # --------------------------- INSERT steps functions ----------------------- def _insertAllSteps(self): self._defineFileNames() self._defineParamsName() self._initializeCryosparcProject() self._insertFunctionStep("convertInputStep") self._insertFunctionStep('processStep') self._insertFunctionStep('createOutputStep') # --------------------------- STEPS functions ------------------------------ def _getInputVolume(self): if self.hasAttribute('refVolumes'): self.volumes = [] for volume in self.refVolumes: vol = volume.get() self.volumes.append(vol) return self.volumes return None def _importVolume(self): self.importVolumes = CsvList() for vol in self.volumes: self.vol_fn = os.path.join(os.getcwd(), convertBinaryVol( vol, self._getTmpPath())) self.importVolume = doImportVolumes(self, self.vol_fn, 'map', 'Importing volume...') self.importVolumes.append(self.importVolume.get()) self.currenJob.set(self.importVolume.get()) self._store(self)
[docs] def processStep(self): self.vol = [vol + '.imported_volume.map' for vol in self.importVolumes] print(pwutils.yellowStr("3D Classification started..."), flush=True) self.do3DClasification()
[docs] def createOutputStep(self): """ Create the protocol output. Convert cryosparc file to Relion file """ import ast self._initializeUtilsVariables() print(pwutils.yellowStr("Creating the output..."), flush=True) get_job_streamlog(self.projectName.get(), self.run3dClassification.get(), self._getFileName('stream_log')) # Get the metadata information from stream.log with open(self._getFileName('stream_log')) as f: data = f.readlines() x = ast.literal_eval(data[0]) # Find the ID of last iteration and the map resolution for y in x: if 'text' in y: z = str(y['text']) if z.startswith('FSC Iteration'): itera = z.split(' ')[2] csParticlesName = ("cryosparc_" + self.projectName.get() + "_" + self.run3dClassification.get() + "_00" + itera + "_particles.cs") csFile = os.path.join(self.projectPath, self.projectName.get(), self.run3dClassification.get(), csParticlesName) # Create the output folder ouputsPath = os.path.join(self.projectPath, self.projectName.get(), self.run3dClassification.get()) outputFolder = self._getExtraPath() + '/' + self.run3dClassification.get() os.system("mkdir " + outputFolder) # Copy the particles to scipion output folder os.system("cp -r " + csFile + " " + outputFolder) csFile = os.path.join(outputFolder, csParticlesName) outputStarFn = self._getFileName('out_particles') argsList = [csFile, outputStarFn] parser = defineArgs() args = parser.parse_args(argsList) convertCs2Star(args) # Create model files for 3D classification with open(self._getFileName('out_class'), 'w') as output_file: output_file.write('\n') output_file.write('data_images') output_file.write('\n\n') output_file.write('loop_') output_file.write('\n') output_file.write('_rlnReferenceImage') output_file.write('\n') numOfClass = len(self.importVolumes) for i in range(numOfClass): csVolName = ("cryosparc_" + self.projectName.get() + "_" + self.run3dClassification.get() + "_class_%02d" % i + "_00" + itera + "_volume.mrc") os.system("cp -r " + ouputsPath + "/" + csVolName + " " + outputFolder) output_file.write("%02d" % ( i + 1) + "@" + self._getExtraPath() + "/" + self.run3dClassification.get() + "/cryosparc_" + self.projectName.get() + "_" + self.run3dClassification.get() + "_class_%02d" % i + "_00" + itera + "_volume.mrc\n") imgSet = self._getInputParticles() classes3D = self._createSetOfClasses3D(imgSet) self._fillClassesFromIter(classes3D, self._getFileName('out_particles')) self._defineOutputs(outputClasses=classes3D) self._defineSourceRelation(imgSet, classes3D) # create a SetOfVolumes and define its relations volumes = self._createSetOfVolumes() vol = None for class3D in classes3D: vol = class3D.getRepresentative() vol.setObjId(class3D.getObjId()) volumes.append(vol) volumes.setSamplingRate(vol.getSamplingRate()) self._defineOutputs(outputVolumes=volumes) self._defineSourceRelation(self.inputParticles.get(), volumes)
# --------------------------- UTILS functions --------------------------- def _loadClassesInfo(self, filename): """ Read some information about the produced CryoSparc Classes from the star file. """ self._classesInfo = {} # store classes info, indexed by class id modelStar = md.MetaData(filename) for classNumber, row in enumerate(md.iterRows(modelStar)): index, fn = cryosparcToLocation( row.getValue('rlnReferenceImage')) # Store info indexed by id, we need to store the row.clone() since # the same reference is used for iteration self._classesInfo[classNumber + 1] = (index, fn, row.clone()) def _fillClassesFromIter(self, clsSet, filename): """ Create the SetOfClasses3D """ self._loadClassesInfo(self._getFileName('out_class')) outImgsFn = self._getFileName('out_class') clsSet.classifyItems(updateItemCallback=self._updateParticle, updateClassCallback=self._updateClass, itemDataIterator=md.iterRows(filename, sortByLabel=md.RLN_IMAGE_ID)) def _updateParticle(self, item, row): item.setClassId(row.getValue(md.RLN_PARTICLE_CLASS)) item.setTransform(rowToAlignment(row, ALIGN_PROJ)) def _updateClass(self, item): classId = item.getObjId() if classId in self._classesInfo: index, fn, row = self._classesInfo[classId] fn += ":mrc" item.setAlignmentProj() vol = item.getRepresentative() vol.setLocation(index, fn) vol.setSamplingRate(calculateNewSamplingRate(vol.getDim(), self._getInputParticles().getSamplingRate(), self._getInputParticles().getDim())) # --------------------------- INFO functions ------------------------------- def _validate(self): validateMsgs = cryosparcValidate() if not validateMsgs: validateMsgs = gpusValidate(self.getGpuList(), checkSingleGPU=True) if not validateMsgs: particles = self._getInputParticles() if not particles.hasCTF(): validateMsgs.append( "The Particles has not associated a " "CTF model") volumes = self._getInputVolume() if volumes is not None and len(volumes) < 2: validateMsgs.append( "The number of initial volumes must be equal or greater than 2") return validateMsgs def _summary(self): summary = [] if (not hasattr(self, 'outputVolumes') or not hasattr(self, 'outputClasses')): summary.append("Output objects not ready yet.") else: summary.append("Input Particles: %s" % self.getObjectTag('inputParticles')) summary.append("Initial volumes: %s" % self.getObjectTag('refVolumes')) summary.append("Symmetry: %s" % getSymmetry(self.symmetryGroup.get(), self.symmetryOrder.get())) summary.append("------------------------------------------") summary.append("Output volumes %s" % self.getObjectTag('outputVolumes')) summary.append("Output classes %s" % self.getObjectTag('outputClasses')) return summary # --------------------------- UTILS functions --------------------------- def _defineParamsName(self): """ Define a list with all protocol parameters names""" self._paramsName = ['multirefine_N', 'multirefine_symmetry', 'multirefine_sharp_bfactor', 'multirefine_force_hard_class', 'multirefine_batch_size_per_class', 'multirefine_update_rule', 'multirefine_online_em_lr_rand', 'multirefine_online_em_lr_init', 'multirefine_online_em_lr_hl', 'multirefine_halfmap_decay', 'multirefine_res_init', 'multirefine_bp_res_factor', 'multirefine_use_max_fsc', 'multirefine_assignment_conv_eps', 'multirefine_num_rand_assign_iters', 'multirefine_num_final_full_iters', 'multirefine_noise_model', 'multirefine_noise_init_sigmascale', 'compute_use_ssd'] self.lane = str(self.getAttributeValue('compute_lane'))
[docs] def do3DClasification(self): """ """ input_group_conect = {"particles": str(self.par)} group_connect = {"volume": self.vol} # {'particles' : 'JXX.imported_particles' } params = {} for paramName in self._paramsName: if (paramName != 'multirefine_symmetry' and paramName != 'multirefine_noise_model'): params[str(paramName)] = str(self.getAttributeValue(paramName)) elif paramName == 'multirefine_symmetry': symetryValue = getSymmetry(self.symmetryGroup.get(), self.symmetryOrder.get()) params[str(paramName)] = symetryValue elif paramName == 'multirefine_noise_model': params[str(paramName)] = str(NOISE_MODEL_CHOICES[self.multirefine_noise_model.get()]) # Determinate the GPUs to use (in dependence of # the cryosparc version) try: gpusToUse = self.getGpuList() except Exception: gpusToUse = False self.run3dClassification = enqueueJob(self._className, self.projectName.get(), self.workSpaceName.get(), str(params).replace('\'', '"'), str(input_group_conect).replace('\'', '"'), self.lane, gpusToUse, group_connect) self.currenJob.set(self.run3dClassification.get()) self._store(self) waitForCryosparc(self.projectName.get(), self.run3dClassification.get(), "An error occurred in the 3D Classification process. " "Please, go to cryosPARC software for more " "details.") print(pwutils.yellowStr("Removing intermediate results..."), flush=True) self.clearIntResults = clearIntermediateResults(self.projectName.get(), self.run3dClassification.get())